Физические свойства металлов: твердость, плотность и др.

Содержание

Металлы. Свойства, характеристики металлов

Металлы (от лат. metallum – шахта, рудник, копь) – наиболее широко используемый класс конструкционных материалов, применение которых наряду с неметаллами и композитами позволяет решать почти любые технологические задачи. К металлам принято относить элементы, обладающие характерными металлическими свойствами (высокой тепло- и электропроводностью, повышенной пластичностью и т. д.).

Число элементов, проявляющих свойства металлов, гораздо больше по сравнению с числом элементов, характеризующихся неметаллическими свойствами. Металлы расположены в I и II группах Периодической системы Д. И. Менделеева, а также образуют побочные подгруппы III–VIII групп. Ряд элементов проявляет амфотерные свойства (амфотерность – двойственность, способность некоторых соединений в зависимости от условий демонстрировать как кислотные, так и основные свойства).

Металлические свойства элементов определяются способностью атомов при взаимодействии с атомами других элементов частично или полностью смещать к ним электронные облака или «отдавать» электроны, т. е. проявлять при взаимодействии восстановительные свойства.

Металлы

К самым активным металлам относятся элементы, обладающие:

  • низкой энергией ионизации;
  • большим радиусом атома;
  • малым числом внешних электронов;
  • небольшим значением электроотрицательности.

По мере заполнения внешнего энергетического уровня электронами их число на валентном уровне атомов элементов растет, а радиус атомов уменьшается, поэтому в большей степени проявляется склонность атомов к присоединению, а не к отдаче электронов. В связи с этим в периоде при движении слева направо металлические свойства элементов постепенно уменьшаются, а неметаллические – увеличиваются.

Имея больший радиус атома, металлы характеризуются, как было сказано выше, сравнительно низкими значениями энергии ионизации, сродства к электрону и электроотрицательности. Эти особенности влияют на преобладание у металлов восстановительных свойств, т. е. способности их атомов отдавать электроны. Ярче всего восстановительные свойства выражены у атомов металлов I и II групп главных подгрупп или у s-элементов. Самым сильным восстановителем является франций, а в водной среде – литий, выделяющийся за счет более высокого значения энергии гидратации образующихся катионов металла.

Число элементов, проявляющих металлические свойства, внутри периодов возрастает по мере увеличения номера периода. Так, во втором периоде это два элемента, в третьем – три, в четвертом – тринадцать и т. д.

В Периодической таблице металлические элементы отделены от неметаллических диагональной линией, проходящей от бора к астату. Вдоль этой границы располагаются элементы, одновременно проявляющие свойства и металлов, и неметаллов. К ним относятся бор, кремний, германий, мышьяк, сурьма, теллур и астат, которые называются полуметаллами или металлоидами. Таким образом, внутри каждого периода имеется «пограничная зона», где располагается элемент, имеющий двойственные свойства. Соответственно переход от типичного металла к типичному неметаллу в периоде происходит постепенно.

Начиная с 3-го периода у атомов появляются новые подуровни. Поэтому увеличивается число свободных орбиталей и, следовательно, возрастает между атомами количество связей, способствующих образованию сложных молекул, таких как комплексные соединения. В комплексных соединениях связь чаще всего образуется по донорно-акцепторному механизму. В роли акцептора, как правило, выступает положительно заряженный ион металла. Практически все элементы могут исполнять роль комплексообразователя, но наибольшее число комплексных соединений характерно для d-элементов 4-, 5- и 6-го периодов системы. Следовательно, элементы побочных подгрупп (В) более склонны к комплексообразованию, чем элементы главных подгрупп (А).

1. Физические свойства металлов

Почти все металлы, за исключением франция и ртути, в стандартных условиях находятся в твердом состоянии. При нагревании до определенной температуры они плавятся, а при еще более высоких температурах переходят в газообразное состояние.

свойства металлов

Твердость металлов, а также их температура плавления обусловлены прочностью пространственной кристаллической решетки. Самые мягкие – щелочные металлы, которые легко режутся ножом. Наиболее твердые – металлы VIВ группы, особенно хром; по твердости он приближается к алмазу и режет стекло.

Изменение температуры плавления можно проследить по таблице Д. И. Менделеева: каждый период начинается с металла, имеющего очень низкий показатель. По мере увеличения заряда ядра атома температура плавления растет и достигает максимума в группе хрома, где находится самый тугоплавкий металл – вольфрам (3390 °С). Далее она снижается

и достигает минимума в подгруппе цинка, где находится самый легкоплавкий металл – ртуть (–38,9 °С). Металлы, температуры плавления которых выше 1000 °С, называют тугоплавкими, а ниже 100 °С – легкоплавкими.

Металлический блеск является следствием отражения световых лучей, а его интенсивность определяется долей поглощаемого света. Большинство металлов почти полностью отражают свет всех длин волн спектра, в связи с чем имеют белый или серый цвет. Наиболее ярко блестят палладий и серебро. Некоторые металлы (медь, золото, цезий) поглощают зеленый или голубой свет сильнее, чем свет других длин волн, поэтому окрашены в желтый или красный цвета.

В мелкораздробленном состоянии многие металлы теряют блеск. Например, железо, платина, хром становятся черного или серого цвета, тогда как алюминий и магний в порошкообразном состоянии продолжают блестеть. Интенсивность блеска зависит от доли поглощенного света: чем меньше света поглощает металл, тем более интенсивным будет блеск.

Все металлы полностью отражают радиоволны, что используется для обнаружения различных металлических объектов с помощью радиоволн (радиолокация).

Теплота сублимации это характеристика, представляющая собой энергию, необходимую для перевода определенной массы металла в парообразное состояние. Теплота сублимации является мерой прочности связи в кристаллической решетке металла. В каждом периоде таблицы Д. И. Менделеева с увеличением порядкового номера теплота сублимации возрастает и достигает максимума для металлов подгруппы хрома, затем снижается до минимального значения в подгруппе цинка. Характер изменения значений теплоты сублимации в побочных подгруппах аналогичен изменению температур плавления и кипения металлов.

Электропроводность обусловлена присутствием в металле свободных электронов, которые направленно перемещаются при наложении электрического тока. Металлы – проводники 1-го рода, поскольку проводят электрический ток без изменений своей структуры. При нагревании электропроводность уменьшается, так как усиливается колебательное движение ионов, что затрудняет движение электронов. При охлаждении же электропроводность возрастает. Вблизи абсолютного нуля она стремится к бесконечности – это так называемое явление сверхпроводимости.

Теплопроводность – это свойство металлов, обеспечиваемое взаимодействием электронов проводимости с ионами, находящимися в узлах кристаллической решетки. Теплопроводность связана с электропроводностью: у металлов с высокой электропроводностью теплопроводность так же высока.

Пластичность металлов представляет собой легкость деформации, особенно проявляющуюся при высоких температурах. Обусловлена она тем, что под внешним воздействием одни слои в кристаллах легко перемещаются (скользят) относительно других без разрыва. Благодаря этому большинство металлов прокатывается в листы, вытягивается в проволоку, поддается ковке, прессованию и т. д. Наиболее пластичны золото, серебро и медь. Механически прочные металлы деформируются только под воздействием больших нагрузок.

Плотность – это критерий, лежащий в основе разделения металлов на легкие и тяжелые. Металлы, плотность которых меньше 5 г/см 3 , условно принято называть легкими, а более 5 г/см 3 – тяжелыми. Самый легкий из металлов – литий (плотность 0,53 г/см 3 ), а самый тяжелый – осмий (плотность 22,6 г/см 3 ). К легким относятся щелочные, щелочноземельные металлы, а также бериллий, алюминий, скандий, иттрий и титан, а к тяжелым – все остальные.

Плотность металлов связана с температурой их плавления. Легкие металлы обычно самые легкоплавкие, например, цезий с плотностью 1,87 г/см 3 плавится при температуре +28 °С, а вольфрам с плотностью 19 г/см 3 имеет температуру плавления, равную +3380 °С.

Фотоэлектрический эффект – это свойство металлов выбрасывать электроны с поверхности под действием электромагнитных волн, что обусловлено слабой связью валентных электронов с ядром. Чем слабее эта связь, тем меньше энергии необходимо для отрыва электрона. Именно поэтому в щелочных металлах фотоэлектрический эффект выражен сильнее.

На границе раздела двух металлов возникает контактная разность потенциалов, вызванная различной концентрацией электронов проводимости и разной работой выхода электронов у соприкасающихся поверхностей.

Полиморфизм это явление существования металла в разных формах в твердом состоянии, или способность принимать различные кристаллические формы. Полиморфные модификации отличаются как внутренней структурой, так и физическими свойствами. Например, у железа известны α-, β-, γ-формы. Модификация α- железа устойчива при низких температурах, β– при более высоких.

Магнитные свойства присущи фактически всем металлам, поскольку они являются магнетиками – веществами, изменяющими или приобретающими магнитный момент под действием внешнего (стороннего) магнитного поля. Мерой измерения магнитных свойств металлов служат следующие величины: остаточная индукция, коэрцитивная сила и магнитная проницаемость (магнитная восприимчивость).

Металлы по магнитным свойствам могут быть разделены на три основные группы:

  • диамагнетики – выталкиваются из магнитного поля и ослабляют его;
  • парамагнетики – втягиваются магнитным полем, незначительно усиливая его;
  • ферромагнетики – усиливают магнитное поле на порядки величин.

К диамагнетикам относятся такие металлы, как медь, серебро, золото, кремний, бериллий и металлы подгруппы цинка, галлия, германия. Им свойственна отрицательная магнитная восприимчивость, поскольку под действием внешнего магнитного поля в них возникает намагниченность, направленная ему навстречу. Парамагнетики – металлы с небольшой положительной восприимчивостью (в основном щелочные и щелочноземельные), которые намагничиваются в направлении внешнего поля. Ферромагнетики включают металлы, обладающие высокой магнитной восприимчивостью – это железо, кобальт, никель. Есть металлы и сплавы, которые не принадлежат трем упомянутым группам: антиферромагнетики (ряд редкоземельных металлов), ферриты (соединения оксида железа) и т. д.

Металлы, применяемые в технике, подразделяются на черные (железо и его сплавы), цветные (все остальные, включая магний и алюминий), драгоценные (золото, платина, палладий, иридий), редкие (цирконий, иттрий, лантан, церий и др.).

2. Типы кристаллических решеток

Все металлы в твердом состоянии представляют собой кристаллы. Кристалл – это совокупность атомов, расположенных в пространстве не хаотично, а в геометрически правильной последовательности. Пространственное расположение атомов и образует кристаллическую решетку.

В узлах пространственной кристаллической решетки металла правильно расположены положительно заряженные ионы, а между ними перемещаются свободные электроны – электронный газ. Переходя от одного катиона к другому, они осуществляют связь между ионами и превращают кристалл металла в единое целое. Эта связь, называемая металлической, возникает между атомами металлов за счет перекрывания электронных облаков внешних электронов. Металлическая связь отличается от неполярной ковалентной связи своей ненаправленностью. В кристалле металлического типа электроны не закреплены между двумя атомами, а принадлежат всем атомам данного кристалла, т. е. делокализованы. К особенности структуры металлических кристаллов относятся большие координационные числа – 8÷12, которым соответствует высокая плотность упаковки.

Кристаллическая решетка каждого металла состоит из положительно заряженных ионов одинакового размера, расположенных в кристалле по принципу наиболее плотной упаковки шаров одинакового диаметра.

Различают три основных типа упаковки, или кристаллической решетки.

1. Объемноцентрированная кубическая решетка с координационным числом, равным 8 (натрий, калий, барий). Атомы металла расположены в вершинах куба, а один – в центре объема. Плотность упаковки шарообразными ионами в этом случае составляет 68 %.

2. Гранецентрированная кубическая решетка с координационным числом, равным 12 (алюминий, медь, серебро). Атомы металла расположены в вершинах куба и в центре каждой грани. Плотность упаковки – 74 %.

3. Гексагональная решетка с координационным числом 12 (магний, цинк, кадмий). Атомы металла расположены в вершинах и центре шестигранных оснований призмы, а еще три – в ее средней плоскости. Плотность упаковки – 74 %.

Из-за неодинаковой плотности атомов в различных направлениях кристалла наблюдаются разные свойства. Это явление, получившее название анизотропия, характерно для одиночных кристаллов – монокристаллов. Однако большинство металлов в обычных условиях имеют поликристаллическое строение, т. е. состоят из значительного числа кристаллов, или зерен, каждое из которых анизотропно. Разная ориентировка отдельных зерен приводит к усреднению свойств поликристаллического металла.

Особенности кристаллических решеток обусловливают характерные физические свойства металлов.

3. Характеристика химических свойств металлов

3.1. Восстановительная способность

Все металлы в свободном состоянии – восстановители, поэтому в соединениях их степени окисления всегда положительны. Химическая активность металлов, т. е. их способность отдавать электроны, может быть охарактеризована с помощью двух величин: энергии ионизации и стандартного электродного потенциала. Различие между этими величинами заключается в том, что энергия ионизации влияет на процесс отрыва электрона от атомов металлов в газовой фазе, а электродные потенциалы изменяют свойства металлов в растворах.

Энергия ионизации (Еи) – энергия, необходимая для удаления электрона из изолированного атома на бесконечно большое расстояние:

Электродный потенциал (Е 0 ) количественно характеризует способность металла отдавать электроны в растворе, т. е. его восстановительные свойства:

Интенсивность взаимодействия металлов с элементарными окислителями определяется не только энергией ионизации атома металла, но и энергией сродства к электрону, и энергией диссоциации молекулярного окислителя. Последнее служит объяснением более легкого окисления металлов галогенами, чем кислородом или азотом, обладающими высокими значениями сродства к электрону.

Внутри каждого периода таблицы Д. И. Менделеева при движении слева направо энергия ионизации повышается: наименьшей энергией характеризуется щелочной металл, а наибольшей – благородный газ. Тогда как в пределах одной группы с возрастанием заряда ядра энергия ионизации, наоборот, уменьшается, так как радиус атома увеличивается, а притяжение электрона к ядру ослабевает. Следовательно, в периоде восстановительная способность атомов элементов уменьшается, а в группе увеличивается.

Все металлы окисляются фтором и могут окисляться хлором. Большинство из них, кроме золота и платины, окисляются бромом в кислой среде. Продуктами такого взаимодействия являются высшие галиды металлов.

С кислородом металлы взаимодействуют менее энергично, что объясняется высоким значением энергии диссоциации его молекулы. Продуктами такого взаимодействия являются, как правило, оксиды, хотя в некоторых случаях возможно образование пероксидов.

С азотом многие металлы вообще не взаимодействуют. Лишь некоторые, способные гореть в атмосфере азота, образуют нитриды. Такая устойчивость обусловлена высокой энергией диссоциации молекулы азота. Атомарный же азот легко взаимодействует со многими металлами с образованием нитридов.

С серой почти все металлы взаимодействуют при нагревании. Особенно легко они реагируют на расплавленную серу. Продуктами такого взаимодействия являются сульфиды металлов.

С водородом активные металлы взаимодействуют с образованием гидридов. Легкость перехода атомов металлов в гидратированные ионы зависит не только от химической активности металла, но и от энергии гидратации его иона.

Сравним свойства двух металлов: лития и цезия. Оба они относятся к s-элементам I группы, но литий находится во втором периоде, а цезий – в шестом. Поскольку радиус атома цезия больше, чем радиус атома лития, то энергия ионизации лития (5,39 эВ) больше, чем цезия (3,89 эВ). Ионы лития лучше гидратируются, благодаря чему в водных растворах он является более сильным восстановителем. А вот в твердом виде наиболее активным металлом и эффективным восстановителем становится цезий.

Металлы при взаимодействии с кислородом (прямом или косвенном) образуют основные оксиды, гидроксиды которых проявляют основные свойства: металл (Ме) → основной оксид (МехОу) → гидроксид или [Ме(ОН)х] основание. Например:

Оксид и гидроксид кальция проявляют основные свойства, поэтому могут взаимодействовать с кислотными оксидами и с кислотами:

В периоде основные свойства оксидов и гидроксидов уменьшаются:

В группе основные свойства соединений увеличиваются:

Если металл может образовывать соединения с разными степенями окисления, то свойства соединений будут зависеть от степени окисления элемента.

С возрастанием степени окисления металла основные свойства соединений уменьшаются, а кислотные свойства увеличиваются:

Взаимодействие металлов с водородными соединениями зависит от агрегатного состояния водородного соединения и от температуры. В основном галогенводороды реагируют с металлами при высокой температуре. При этом образуются соответствующие галиды металлов и выделяется водород:

С активными металлами данная реакция протекает при обычной температуре.

Взаимодействие металлов с водой определяется их активностью. Активные металлы вытесняют водород из воды при комнатной температуре:

Действие воды на металлы усиливается в присутствии кислорода. Если малоактивные металлы в обычных условиях с водой не взаимодействуют, то в присутствии растворенного кислорода достаточно легко окисляются:

Сероводород (H2S) взаимодействует с металлами преимущественно при высоких температурах с выделением водорода и образованием сульфидов, а в случае активных металлов – гидросульфидов.

Газообразный аммиак (NH3) действует на металлы также при высоких температурах, образуя при этом нитриды или гидронитриды (амиды) металлов. Однако жидкий аммиак активными металлами разлагается:

Образование пассивных пленок. Взаимодействие многих металлов с фтором, хлором, бромом и кислородом тормозится пассивными пленками. Они образуются на поверхности металла и имеют особую структуру, благодаря которой обладают такими свойствами как прочность, высокая плотность, инертность и т. д. Наибольшая склонность к пассивации отличает алюминий, бериллий и d-металлы: титан, хром, железо.

Токсичность. Пыль и пары многих металлов являются токсичными. Примером могут служить бериллий, ртуть, свинец, кадмий, серебро, никель, таллий, радий, индий и т. д. Степень токсичности определяется значением предельно допустимой концентрации (ПДК). Так, для бериллия ПДК = 10 –3 мг/м 3 , для таллия – 10 –1 мг/м 3 .

Комплексообразование. Большинство металлов являются комплексообразователями за счет вакантных (свободных) орбиталей: [Cu(NH3)4]Cl2; K2[HgI4].

Способность к комплексообразованию возрастает с увеличением заряда иона-комплексообразователя и уменьшением его радиуса.

3.2. Отношение металлов к кислотам

Взаимодействие с серной кислотой – H2SO4

1. Разбавленная H2SO4. Окислителем в разбавленной серной кислоте является ион водорода Н + . Следовательно, в реакцию могут вступать металлы, чей

стандартный электродный потенциал меньше, чем у водорода (Е 0 Me > Е 0 H = 0) :

2. Концентрированная H2SO4. Окислителем в этом случае является атом серы со степенью окисления +6 – S +6 . В зависимости от активности металла реакция может быть разной:

  • металлы низкой активности (Е 0 Me< Е 0 H ) восстанавливают серную кислоту до диоксида серы:
  • металлы средней активности, для которых справедливо соотношение Е 0 Mn = – 1,05 ≤ Е 0 Me< Е 0 H, восстанавливают серу серной кислоты до простого вещества:
  • металлы высокой активности ( Е 0 Me< Е 0 Mn ) вытесняют из серной кислоты сероводород, в котором степень окисления серы минимальна и равна – 2:

Взаимодействие с азотной кислотой – HNO3

1. Разбавленная HNO3. Окислителем в азотной кислоте всегда является атом N +5 , поэтому при взаимодействии с металлами из нее никогда не выделяется водород. Возможны три варианта взаимодействия металлов разной активности с разбавленной HNO3:

  • металлы низкой активности ( Е 0 Me >Е 0 H ) способны восстанавливать азот азотной кислоты до степени окисления +2:
  • металлы средней активности ( Е 0 Mn = – 1,05 ≤ Е 0 Me< Е 0 H) восстанавливают азотную кислоту до простого вещества N2 (или до закиси азота N2O):
  • металлы высокой активности ( Е 0 Me< Е 0 Mn) способны восстановить азот азотной кислоты до минимальной степени окисления –3:

2. Концентрированная HNO3. В этом случае различают лишь два варианта взаимодействия с металлами:

  • металлы низкой активности ( Е 0 Me >Е 0 H) восстанавливают азотную кислоту до диоксида азота NO2, в котором степень окисления азота равна +4:
  • активные металлы (Е 0 Ме< Е 0 Н) при растворении в концентрированной кислоте выделяют из нее оксид азота (II):

Такие металлы, как Fe, Al, Cr, Ti не взаимодействуют с концентрированной HNO3 вследствие явления пассивации.

Разложение нитратов металлов разной активности. От активности металла зависит состав продуктов разложения солей азотной кислоты. Возможны три варианта термического разложения нитратов металлов разной активности:

  1. стоящие в ряду напряжений до Mg при разложении образуют соответствующие нитриты и кислород: MeNO3 → MeNO2 + O2;
  2. расположенные в ряду напряжений в диапазоне «Mg – Cu» разлагаются с образованием соответствующих оксидов, диоксида азота и кислорода: MeNO3 → MeO + NO2 + O2;
  3. находящиеся в ряду напряжений после Cu разлагаются с выделением металла в виде простого вещества, диоксида азота и кислорода: MeNO3 → Me + NO2 + O2.

4. Металлические сплавы

В твердом состоянии металлы практически не взаимодействуют друг с другом, однако в расплавленном состоянии могут иметь место и растворение, и взаимодействие. Различные расплавленные металлы в большинстве случаев смешиваются друг с другом в любых соотношениях, образуя жидкие однородные системы. В отдельных случаях наблюдается неполная взаимная растворимость. Например, расплавленные цинк и свинец при смешивании образуют двухслойную жидкую систему, фазы которой представляют собой растворы цинка в свинце и свинца в цинке.

Металлические сплавы

Отличительные признаки смешанных металлических расплавов проявляются в процессе их кристаллизации при охлаждении в некотором температурном интервале. Система при этом затвердевает, образуя металлический сплав.

Металлические сплавы – это вещества, обладающие свойствами металлов и состоящие из двух и более компонентов, из которых хотя бы один является металлом.

Природа затвердевших сплавов зависит от отношения друг к другу составляющих их компонентов. При сходстве кристаллических решеток они взаимно растворимы друг в друге даже в твердом состоянии. Из их расплавов при охлаждении кристаллизуются твердые растворы, представляющие собой кристаллы с решетками, в узлах которых попеременно располагаются ионы составляющих металлов, например, медь – серебро. При близости параметров кристаллических решеток составляющих металлов наблюдается их неограниченная растворимость друг в друге, т. е. могут образовываться твердые растворы с любым содержанием исходных веществ. Системы с полной взаимной растворимостью – это непрерывные твердые растворы: Ag – Au, Ni – Co, Cu – Ni, Mo – W.

Твердые растворы металлов обладают свойствами, качественно напоминающими свойства индивидуальных металлов, но количественно отличающимися от них в зависимости от состава. Например, латунь (сплав Cu – Zn) имеет прочность на разрыв, которая в 3 раза больше, чем у меди и в 6 раз, чем у цинка, а нержавеющая сталь (сплав Fe – Cr – Ni) устойчива в разбавленной H2SO4, тогда как чистый металл Fe в ней растворяется.

Среди компонентов твердого раствора различают металл-растворитель и растворенный металл. Растворителем считается металл, сохраняющий свою кристаллическую решетку при образовании раствора, и содержание которого в растворе должно быть не меньше определенного значения. Ионы растворяемого металла постепенно замещают в кристаллической решетке ионы металла-растворителя (растворы замещения) или располагаются между ними (растворы внедрения). В том случае, когда различные металлы с близкими кристаллическими решетками способны образовывать твердые растворы в любых количественных соотношениях, отличить растворенный металл от металла-растворителя нет возможности: приходится считать, что они взаимно растворяют друг друга.

Ионы растворенного металла изменяют средние размеры элементарной ячейки металла-растворителя. При образовании твердых растворов замещения параметры решетки изменяются в зависимости от разности ионных диаметров растворенного металла и растворителя. При образовании твердых растворов внедрения параметры решетки увеличиваются, так как размеры ионов растворенного металла больше межионных помежутков, в которых они располагаются.

Однако чаще всего растворимость твердых металлов друг в друге ограничена, т. е. в твердой фазе содержание одного из металлов не может превысить некий предел. В этом случае при полном затвердевании расплава из двух металлов образуется неоднородный сплав, состоящий из двух твердых фаз, одна из которых представляет собой насыщенный раствор первого металла во втором, а другая – насыщенный раствор второго металла в первом. Иногда растворимость настолько ничтожна, что отдельные твердые фазы образовавшегося сплава можно считать состоящими практически из индивидуальных металлов.

Многие металлы, взаимно растворимые в расплавленном состоянии, при охлаждении образуют смесь кристаллов с различной кристаллической решеткой. Температура плавления (Тпл) такой смеси меньше Тпл отдельных компонентов.

Состав, имеющий минимальную Тпл, называется эвтектикой. Эвтектический сплав состоит из мельчайших кристаллов индивидуальных компонентов. Его образуют металлы очень близкие по природе, но существенно отличающиеся по типу кристаллической решетки, например, Рb – Sn, Pb – Sb, Cd – Bi, Sn – Zn. Эвтектические сплавы имеют высокую твердость и прочность.

В некоторых случаях при взаимодействии двух металлов образуются химические соединения, именуемые интерметаллидами. Большинство этих соединений устойчивы только в твердом состоянии, так как их формульный состав не соответствует классическим представлениям о валентности элементов, например, TiBe12. Очень часто интерметаллиды имеют переменный состав, так как в твердом состоянии способны растворяться в металлах и других интерметаллических соединениях.

Интерметаллиды представляют собой соединения с металлической связью между входящими в их состав атомами. Термическая прочность таких соединений невысока: большинство из них при плавлении частично или полностью разлагается.

Интерметаллические соединения выглядят как металлоподобные вещества. Однако типичные для металлов физические свойства у интерметаллидов проявляются слабее. Обычно у них и электропроводность меньше, чем у компонента с низшей электрической проводимостью, и теплопроводность, и блеск, и пластичность существенно уступают соответствующим элементарным металлам. По химическим же свойствам интерметаллиды им подобны. Некоторые сравнительно прочные интерметаллические соединения в расплавленном состоянии могут подвергаться электролизу, причем на катоде выделяется более активный металл, на аноде – менее активный.

Металлические сплавы можно получить разными способами. Например, спеканием, суть которого заключается в том, что при высокой температуре и под большим давлением в смеси порошкообразных металлов осуществляется их взаимная диффузия.

Другой способ получения металлических сплавов – электролиз смеси электролитов, при котором на катоде одновременно восстанавливаются ионы двух или более металлов.

Кроме того, металлические сплавы образуются при возгонке нескольких металлов, когда из смеси паров происходит одновременная конденсация, сопровождающаяся взаимной диффузией компонентов друг в друга.

Композиционные материалы. Композиты получают путем объемного сочетания химически разнородных компонентов при сохранении между ними границы раздела. Свойства композитов существенно отличаются от свойств входящих в них компонентов.

Композиты состоят из основы (матрицы) и добавок (порошки, волокна, стружка). В качестве основы используют металлы, керамику, полимеры.

  1. Если основой служат металлы, то добавками могут быть металлические нитевидные кристаллы, неорганические волокна и порошки: Al2O3, SiO2 и т. д.
  2. Если основой является керамика, то добавками выступают металлы. Например, основа – Al2O3, Cr2O3, MgO, ZrO2 и т. д., добавки – Mo, W, Ta, Ni, Co. Такие композиты называются керамико-металлическими материалами (керметами).

Композиты характеризуются высокой прочностью, твердостью, износостойкостью, благодаря чему их используют в качестве конструкционных материалов, контактов, подшипников, инструментов и т. д.

5. Распространение в природе и способы получения металлов

Значительная часть металлов находится в земной коре в виде различных соединений, и только малоактивные (благородные) встречаются в свободном или самородном состоянии.

Содержание наиболее распространенных металлов в земной коре можно представить следующим образом (масс. %): алюминий – 8,45; железо – 4,4; кальций – 3,3; натрий – 2,6; калий – 2,5; магний – 2,1; титан – 0,61.

Из природных соединений металлов в большей степени распространены оксиды, входящие в состав горных пород, и сульфиды (железа, никеля, меди, цинка и др.). Встречаются также фториды и хлориды – преимущественно щелочных и щелочноземельных металлов. Некоторые металлы присутствуют в виде солей кислородсодержащих кислот (карбонаты, силикаты, сульфаты, фосфаты и т. д.).

Главным источником получения металлов являются руды – скопления металлосодержащих минералов, входящих в состав горных пород. Металлы в составе руд находятся в окисленном состоянии, поэтому основным способом их получения является процесс восстановления. Если в руде содержатся разные металлы, ее подвергают расщеплению на отдельные соединения металлов путем химической обработки. Так, при воздействии на полиметаллические руды хлора (в присутствии восстановителя) образуются хлориды нескольких металлов, которые благодаря разной степени летучести могут быть отделены друг от друга и от непрохлорированной части руды. Чистые хлориды ряда металлов восстанавливают активными металлами до свободных металлов.

металлическая руда

Иногда сложные полиметаллические руды с целью получения сложных сплавов подвергают восстановлению без предварительного разделения. Поскольку они бывают загрязнены так называемой пустой породой, которая затрудняет восстановление, то процессу получения металла предшествует очистка руды или ее обогащение механическими, химическими, физико-химическими и другими методами. Из физико-химических наибольшее распространение получил метод флотации, основанный на различной смачиваемости водой частиц смеси различных материалов.

Чистые оксиды металлов легче и удобнее поддаются процессу восстановления. В связи с этим водные оксиды обезвоживают, а сульфидные руды переводят в оксидные путем окислительного обжига.

Руды с небольшим содержанием металлов подвергают гидрометаллургической переработке водными растворами кислот или щелочей. При этом соединения некоторых металлов переходят в раствор.

Таким образом, наиболее распространенными способами получения металлов являются пирометаллургия и гидрометаллургия.

1. Пирометаллургия – восстановление металлов, при котором в качестве восстановителей используют углерод (карботермия), водород, металлы-восстановители (металлотермия):

Если при восстановлении соединений металлов используется алюминий, метод получения называется алюмотермией. Алюмотермические методы применяют при извлечении из оксидов тугоплавких металлов (ванадий, хром, молибден и др.). Иногда в качестве восстановителя требуется магний. Метод магнийтермии нашел применение при получении титана, циркония, тантала из хлоридов этих металлов.

Углерод по своей восстановительной активности уступает многим металлам. Тем не менее, карботермия имеет широкое распространение при восстановлении металлов малой активности (медь) и средней (железо, цинк, свинец).

2. Гидрометаллургия – восстановление металлов, протекающее из водных растворов их солей при обычной температуре. При этом восстанавливаемый металл находится в мелкораздробленном состоянии. В качестве восстановителей используют активные металлы.

3. Электрометаллургия процесс получения металлов под воздействием постоянного электрического тока, протекающего через раствор или расплав соли металла:

Электролизом водных растворов получают сравнительно малоактивные металлы (медь, серебро, никель и т. д.). А электролизом расплавов солей – высокоактивные (щелочные и щелочноземельные металлы, алюминий).

Получение чистых металлов. Некоторые отрасли промышленности и техники нуждаются в металлах особой чистоты. Например, они востребованы при конструировании ядерных реакторов, в электронной и медицинской технике. Особо чистые металлы отличаются по своим физическим свойствам от обычных. Такие свойства, как пластичность, электро- и теплопроводность, а также сопротивление коррозии у чистых металлов имеют более высокие значения.

В настоящее время проблема получения чистых и сверхчистых металлов решается разными способами.

Физические свойства металлов: твердость, плотность и др.

Физические свойства металлов

Металлы имею такие физические свойства, как твердость, температуру плавления, плотность, пластичность, электропроводность, теплопроводность и цвет.

Твёрдость:

Все металлы, кроме ртути и, условно, франция, при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.

Таблица твёрдости металлов по шкале Мооса:

ТвёрдостьМеталл
0.2Цезий
0.3Рубидий
0.4Калий
0.5Натрий
0.6Литий
1.2Индий
1.2Таллий
1.25Барий
1.5Стронций
1.5Галлий
1.5Олово
1.5Свинец
1.5Ртуть
1.75Кальций
2.0Кадмий
2.25Висмут
2.5Магний
2.5Цинк
2.5Лантан
2.5Серебро
2.5Золото
2.59Иттрий
2.75Алюминий
3.0Медь
3.0Сурьма
3.0Торий
3.17Скандий
3.5Платина
3.75Кобальт
3.75Палладий
3.75Цирконий
4.0Железо
4.0Никель
4.0Гафний
4.0Марганец
4.5Ванадий
4.5Молибден
4.5Родий
4.5Титан
4.75Ниобий
5.0Иридий
5.0Рутений
5.0Тантал
5.0Технеций
5.0Хром
5.5Бериллий
5.5Осмий
5.5Рений
6.0Вольфрам
6.0β-Уран

Температура плавления:

Температуры плавления чистых металлов лежат в диапазоне от −38,83 °C (ртуть) до 3422 °C (вольфрам).

Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые металлы, например, олово и свинец, могут расплавиться на обычной электрической или газовой плите.

В зависимости от температуры плавления металлы делятся на: легкоплавкие (до 600 °C); среднеплавкие (от 600 до 1600 °C); тугоплавкие (выше 1600 °C).

Таблица температуры плавления легкоплавких металлов и сплавов:

Название металлаТемпература плавления, о С
Ртуть-38,83
Франций25
Цезий28,44
Галлий29,7646
Рубидий39,3
Калий63,5
Натрий97,81
Индий156,5985
Литий180,54
Олово231,93
Полоний254
Висмут271,3
Таллий304
Кадмий321,07
Свинец327,46
Цинк419,53

Таблица температуры плавления среднеплавких металлов и сплавов:

Название металлаТемпература плавления, о С
Сурьма630,63
Нептуний639
Плутоний639,4
Магний650
Алюминий660,32
Радий700
Барий727
Стронций777
Церий795
Иттербий824
Европий826
Кальций841,85
Лантан920
Празеодим935
Германий938,25
Серебро961,78
Неодим1024
Прометий1042
Актиний1050
Золото1064,18
Самарий1072
Медь1084,62
Уран1132,2
Марганец1246
Бериллий1287
Гадолиний1312
Тербий1356
Диспрозий1407
Никель1455
Гольмий1461
Кобальт1495
Иттрий1526
Эрбий1529
Железо1538
Скандий1541
Тулий1545
Палладий1554,9
Протактиний1568

Таблица температуры плавления тугоплавких металлов и сплавов:

Название металлаТемпература плавления, о С
Лютеций1652
Титан1668
Торий1750
Платина1768,3
Цирконий1855
Хром1907
Ванадий1910
Родий1964
Технеций2157
Гафний2233
Рутений2334
Иридий2466
Ниобий2477
Молибден2623
Тантал3017
Осмий3033
Рений3186
Вольфрам3422

Плотность:

В зависимости от плотности металлы делят на лёгкие (плотность от 0,53 до 5 г/см³) и тяжёлые (от 5 до 22,6 г/см³).

Самым лёгким металлом является литий (плотность 0,53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22,6 г/см³ — ровно в два раза выше плотности свинца ), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Пластичность:

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними.

Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются.

Пластичность зависит и от чистоты металла . Так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы, такие, как золото, серебро, свинец, алюминий, осмий, могут срастаться между собой, но на это могут уйти десятки лет.

Электропроводность:

Все металлы хорошо проводят электрический ток, обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля.

Серебро, медь и алюминий имеют наибольшую электропроводность. По этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также и натрий. В экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Теплопроводность:

Теплопроводность металлов зависит от подвижности свободных электронов.

Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла. Широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Наименьшая теплопроводность — у висмута и ртути.

Цвет у большинства металлов примерно одинаковый — светло-серый, иногда с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Металлы подразделяются на цветные и черные.

Чёрные металлы – железо и сплавы на его основе (стали, ферросплавы, чугуны). К чёрным металлам также зачастую относят марганец и, иногда, – хром и ванадий.

Цветные металлы — это особый класс нержавеющих металлов и сплавов, в составе которых нет железа. Металлы называются цветными, потому что каждый из них имеет определенный окрас. К цветным металлам относятся медь, молибден, свинец, цинк, олово, никель, кадмий, кобальт, алюминий, титан, магний, висмут, вольфрам, ртуть, золото, платину, серебро, палладий, родий, рутений, осмий, иридий.

Физические и химические свойства металлов

Металлические изделия и детали используются в разных сферах промышленности. Существует множество видов металлов и каждый из них обладает сильными и слабыми сторонами. При изготовлении деталей для машин, самолётов или промышленного оборудования мастера обращают внимание на характеристики материала. Поэтому требуется знать свойства металлов и сплавов.

Крыло самолета

Свойства металлов и сплавов

Классификация металлов

Металлы разделяются на две большие группы — черные и цветные. Представители обоих видов различаются не только характеристиками, но и внешним видом.

Черные

Представители этой группы считаются самыми распространёнными и недорогими. В большинстве своем имеют серый или тёмный цвет. Плавятся при высокой температуре, обладают высокой твердостью и большой плотностью. Главный представитель этой группы — железо. Эта группа разделяется на подгруппы:

  1. Железные — к представителям этой подгруппы относится железо, никель и кобальт.
  2. Тугоплавкие — сюда входят металлы температура плавления которых начинается с 1600 градусов. Их применяют при создании основ для сплавов.
  3. Редкоземельные — к ним относятся церий, празеодим и неодим. Обладают низкой прочностью.

Существуют урановые и щелочноземельные металлы, однако они менее популярны.

Цветные

Представители этой группы отличаются яркой окраской, меньшей прочностью, твердостью и температурой плавления (не для всех). Разделяется эта группа на следующие подгруппы:

  1. Лёгкие — подгруппа, включающая в себя металлы с плотностью до 5000 кг/м3. Это такие материалы, как литий, натрий, калий, магний и другие.
  2. Тяжёлые — сюда относится серебро, медь, свинец и другие. Плотность превышает 5000 кг/м3.
  3. Благородные — представили этой подгруппы имеют высокую стоимость и устойчивость к коррозийным процессам. К ним относятся золото, палладий, иридий, платина, серебро и другие.

Выделяются тугоплавкие и легкоплавкие металлы. К тугоплавким относится вольфрам, молибден и ниобий, а к легкоплавким все остальные.



Строение металлических материалов и их основные свойства

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

К физическим свойствам металлов относят плотность, температуру плавления, цвет, блеск, непрозрачность, теплопроводность, электропроводность, тепловое расширение. По плотности металлы разделяют на легкие (до 3000 кг/м3) и тяжелые (от 6000 кг/м3 и выше); по температуре плавления — на легкоплавкие (до 973 К) и тугоплавкие (свыше 1173 К). Каждый металл или сплав обладает определенным, присущим ему цветом.

Прочностьспособность металла в определенных условиях и пределах не разрушаясь воспринимать те или иные воздействия, нагрузки

. Это свойство учитывается при изготовлении и проектировании изделий, выборе того или иного металла, сплава. Наибольшее напряжение, которое может выдержать металл, не разрушаясь, называют
пределом прочности, или временным сопротивлением разрыву. Образцы для измерения прочности подвергают испытанию на специальной разрывной машине, которая постепенно, с возрастающей силой растягивает образец до полного разрыва.
Упругость— свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших деформацию.

Наибольшее напряжение, после которого металл возвращается к своей первоначальной форме, называют пределом упругости. Если при дальнейшем повышении нагрузки напряжение превышает предел упругости и удлинение сохраняется после разгрузки образца, такое состояние
называют остаточным удлинением. Далее наступает предел текучести, т.е. образец продолжает удлиняться без увеличения нагрузки.
Пластичность — свойство металла под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих сил

. Данное свойство также определяется и измеряется на разрывной машине. Высокой пластичностью обладают золото, серебро, платина и их сплавы. Менее пластичны медь, алюминий, свинец. Это свойство металлов имеет большое значение в давильном и штамповочном производстве, волочении, прокатке.

Твердость — свойство металлов сопротивляться проникновению в них другого тела под действием внешней нагрузки, что необходимо учитывать при выборе инструментов для обработки металлов резанием.

Например, важно знать твердость обрабатываемого металла, чтобы подобрать соответствующую фрезу или сверло. Испытания металлов на твердость проводят на специальных приборах — твердометрах.

Выносливость — свойство металлов сопротивляться действию повторных нагрузок

. Температурные условия значительно влияют на механические свойства металлов: при нагревании их прочность понижается, а пластичность увеличивается; при охлаждений некоторые металлы становятся хрупкими, например, сталь некоторых марок, цинк и его сплавы. Нехладноломкими являются алюминий и медь.

Хрупкость — некоторые металлы обладают хрупкостью и при нормальных условиях, примером является серый чугун. В производстве изделий учитывается способность металлов поддаваться обработке, т.е. такие их технологические свойства, как ковкость, жидкотекучесть, литейная усадка, свариваемость, спекаемость, обрабатываемость резанием и некоторые другие.

Ковкостьспособность металлов подвергаться ковке и другим видам обработки давлением (прокатке, прессованию, волочению, штамповке)

. Металлы могут коваться в холодном состоянии (золото, серебро, медь), а также в горячем (сталь).

Износостойкостьспособность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкостьспособность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкостьэто способность материала сопротивляться окислению в газовой среде при высокой температуре

Жаропрочностьэто способность материала сохранять свои свойства при высоких температурах.

Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.

Антифрикционность – способность материала прирабатываться к другому материалу.

Жидкотекучесть — свойство расплавленного металла заполнять литейную форму. Высокой жидкотекучестью обладают цинк и его сплавы, чугун, бронза, олово, силумин (сплав алюминия с кремнием), латунь,некоторые магниевые сплавы. Низкой жидкотекучестью обладают сталь, красная медь, чистое серебро.

Литейная усадка—уменьшение объема металла при переходе из жидкого состояния в твердое. Это необходимо учитывать при изготовлении формы для отливки. Отливка получается всегда меньше модели, по которой сделана форма. Металлы с большой усадкой для литья почти не используют.

Свариваемость — способность металла прочно соединяться путем местного нагрева и расплавления свариваемых кромок изделия. Сплавы свариваются труднее, чистые металлы — легче. Легко свариваются изделия из малоуглеродистой стали. Плохо поддаются сварке чугун и высокоуглеродистые легированные стали.

Из химических свойств металлов и их сплавов наиболее важными в производстве художественных изделий являются растворение (взаимодействие с кислотами и щелочами) и окисление (антикоррозийная стойкость, т.е.стойкость к воздействию окружающей среды — газов, воды и т.д.).

Растворение (разъедание) — способность металлов растворяться в сильных кислотах и едких щелочах. Это свойство широко используется в различных областях производства художественных изделий. Растворение бывает частичное и полное. Частичное применяется для создания чистой поверхности изделия.

Окисление — способность металлов соединяться с кислородом и образовывать окислы металлов.

Данные свойства обусловлены особенностями строения металлов.

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определённым порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решётка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объёма из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

размеры ребер элементарной ячейки. a, b, c – периоды решетки – расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными.·

углы между осями (· ).

координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.·

базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.·

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

примитивный – узлы решетки совпадают с вершинами элементарных ячеек;·

базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;·

объемно-центрированный – атомы занимают вершины ячеек и ее центр;·

гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней·

В металлических материалах, как правило, формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГП).

Основные виды сплавов

Человечество знакомо с различными металлическими сплавами. Самыми многочисленными из них являются соединения на основе железа. К ним относятся ферриты, стали и чугун. Ферриты имеют магнитные свойства, в чугуне содержится более 2,4% углерода, а сталь — это материал с высокой прочность и твердостью.

Отдельное внимания требуют металлические сплавы из цветных металлов.

Сталь

Производство стали

Цинковые сплавы

Соединения металлов, которые плавятся при низких температурах. Смеси на основе цинка устойчивы к воздействию коррозийных процессов. Легко обрабатываются.

Алюминиевые сплавы

Популярность алюминий и сплавы на его основе получили во второй половине 20 века. Этот материал обладает такими преимуществами:

  1. Устойчивость к низким температурам.
  2. Электропроводность.
  3. Малый вес заготовок в сравнении с другими металлами.
  4. Износоустойчивость.

Однако нельзя забывать про то, что алюминий плавится при низких температурах. При температуре около 200 градусов характеристики ухудшаются.

Алюминий применяется при изготовлении комплектующих к машинам, производстве деталей для самолётов, составляющих промышленного оборудования, посуды, инструментов. Не многие знают, что алюминий популярен в сфере производства оружия. Связано это с тем, что детали из алюминия не искрят при сильном трении.

Чтобы увеличить прочность детали, алюминий смешивают с медью. Чтобы заготовка выдерживала давление — с марганцем. Кремний добавляют, чтобы получить обычную отливку.

Медные сплавы

Сплавы на основе меди — марки латуни. Из этого материала изготавливаются детали высокой точности, так как латунь легко обрабатывать. В составе сплава может содержаться до 45% цинка.

Химические свойства

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.

Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

Читайте также: Добро пожаловать в мир создания красивых форм, всегда новых возможностей и индивидуальностей.

Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Свойства сплавов

Чтобы изготавливать детали и конструкции, нужно знать основные свойства металлов и сплавов. При неправильной обработке готовая деталь может быстро выйти из строя и разрушить оборудование.

Двигатель

Двигатель внутреннего сгорания

Физические свойства

Сюда относятся визуальные параметры и характеристики материала, изменяющиеся при обработке:

  1. Теплопроводность. От этого зависит насколько поверхность будет передавать тепло при нагревании.
  2. Плотность. По этому параметру определяется количество материла, которое содержится в единице объёма.
  3. Электропроводность. Возможность металла проводить электрический ток. Этот параметр называется электрическое сопротивление.
  4. Цвет. Этот визуальный показатель меняется под воздействием температур.
  5. Прочность. Возможность материала сохранять структуру при обработке. Сюда же относится твердость. Эти показатели относятся и к механическим свойствам.
  6. Восприимчивость к действию магнитов. Это возможность материала проводить через себя магнитные лучи.

Физические основы позволяют определить в какой сфере будет использоваться материал.

Химические свойства

Сюда относятся возможности материала противостоять воздействию химических веществ:

  1. Устойчивость к коррозийным процессам. Этот показатель определяет на сколько материал защищён от воздействия воды.
  2. Растворимость. Устойчивость металла к воздействию растворителей — кислотам или щелочным составам.
  3. Окисляемость. Параметр указывает на выделение оксидов металлом при его взаимодействии с кислородом.

Обуславливаются эти характеристики химическим составом материала.

Механические свойства

Механические свойства металлов и сплавов отвечают за целостность структуры материала:

  • прочность;
  • твердость;
  • пластичность;
  • вязкость;
  • хрупкость;
  • устойчивость к механическим нагрузкам.

Технологические свойства

Технологические свойства определяют способность металла или сплава изменяться при обработке:

  1. Ковкость. Обработка заготовки давлением. Материал не разрушается. Структура изменяется.
  2. Свариваемость. Восприимчивость детали к работе сварочным оборудованием.
  3. Усадка. Происходит этот процесс при охлаждении заготовки после её разогрева.
  4. Обработка режущим инструментом.
  5. Ликвация (затвердевание жидкого металла при понижении температуры).

Основной способ обработки металлических деталей — нагревание.

Свойства металлов и сплавов отвечают за то, как себя будет вести готовое изделие при эксплуатации. При обработке материалов также важно знать его характеристики.

§ 4. Технологические свойства металлов

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ Короткий путь https://bibt.ru
>

Технологические свойства определяют пригодность материала для изготовления из него детали тем или иным способом. К числу этих свойств относятся: обрабатываемость резанием, ковкость, свариваемость, жидкотекучесть, усадка, склонность к ликвации и др.

Обрабатываемость резанием — способность металла изменять свою форму под действием режущего инструмента (резца, фрезы, сверла и т. д.) при различных Операциях механической обработки (обтачивании, фрезеровании, сверлении).

Ковкость—способность металла принимать определенную форму и размеры под влиянием прилагаемой нагрузки без разрушения.

Свариваемость—способность металлов образовывать прочные соединения при нагреве свариваемых частей до расплавленного или до пластичного состояния. Хорошей свариваемостью обладают стали с низким содержанием углерода. Плохо свариваются чугун, медные и алюминиевые сплавы.

Пригодность металла или сплава для производства отливок определяется его жидкотекучими свойствами. Металл должен обладать способностью хорошо заполнять литейную форму и давать отливки с резко очерченными контурами, т. е. иметь хорошую жидкотекучесть. При недостаточной жидкотекучести форма заполняется не полностью и в тонких сечениях отливки образуются недоливы. Повышение температуры заливки улучшает жидкотекучесть сплавов.

Величину жидкотекучести определяют по технологической пробе (рис. 2), т. е. по длине спирального канала, заполненного металлом в контрольной форме. Чем больше жидкотекучесть сплава, тем большей длины участок спирали он заполнит до затвердевания.

Рис. 2. Технологическая проба для испытания металлов и их сплавов на жидкотекучесть:

1 — литейный стояк, 2 — выпор, 3 — зумф под стояком, 4 — спираль

Усадка — относительное уменьшение основных линейных и объемных размеров отливки по сравнению с размерами модели, по которой она была отформована. При большой усадке металла во время его кристаллизации и охлаждения возникают значительные внутренние напряжения и образуются усадочные раковины. Для удобства усадку отливок выражают в процентах по отношению к размерам модели.

Величина усадки отливок зависит от химического состава сплава, конфигурации детали, а также от других факторов.

Ликвация — свойство сплавов образовывать при охлаждении и кристаллизации отливки с неоднородным химическим составом. Это объясняется тем, что сплав в форме охлаждается неравномерно. Чем больше разница в температуре внешних и внутренних частей отливки при ее охлаждении, тем больше компонентов, плавящихся при более низкой температуре, скапливается в середине сечения.

Различают два вида ликвации: внутрикристаллическую и зональную. Внутрикристаллическая ликвация характерна для фасонных отливок, изготовляемых из сплавов, образующих твердые растворы. В большинстве случаев скорость затвердевания отливки превышает скорость диффузии, которая необходима для выравнивания химического состава. Последнее является основной причиной развития внутрикристаллической ликвации в отливках.

Зональная ликвация наблюдается в толстостенных отливках, слитках, которые медленно охлаждаются в формах. Зональная ликвация может происходить по двум основным причинам: в связи с расслоением жидкого сплава из-за различной плотности, которое происходит при недостаточном перемешивании сплава при плавке и заливке, или при выпадении из жидкого сплава легких и тяжелых кристаллизующихся фаз.

Источник https://extxe.com/16319/metally-svojstva-harakteristiki-metallov/

Источник https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/fizicheskie-svoystva-metallov-tverdost-plotnost-i-dr/

Источник https://nicespb.ru/materialy/svojstva-metallicheskih-materialov.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: